Week 12 - Substitution-Areas

Substitution: We know that

$$\frac{d}{dx}F(u(x)) = \frac{dF(u)}{du}\,\frac{du(x)}{dx}$$

by the chain rule. If we integrate both sides, we see that

$$\int f(u(x)) u'(x) dx = F(u(x)) + c$$

where f = F', or more simply

$$\int f(u(x)) u'(x) dx = \int f(u) du$$

Exercise 12-1: Evaluate the integral

$$\int (x^4 + 1)^2 \, 4x^3 \, dx$$

Solution: It is possible the expand the parenthesis, but there is no need.

$$u = x^4 + 1 \quad \Rightarrow \quad du = 4x^3 \, dx$$

The new integral is:

$$\int u^2 \, du = \frac{u^3}{3} + c$$

But we have to express this in terms of the original variable:

$$\frac{(x^4+1)^3}{3} + c$$

Exercise 12-2: Evaluate the integral

$$\int e^{3x^2} x \, dx$$

Solution: Let
$$I = \int e^{3x^2} x \, dx$$

$$u = 3x^2 \quad \Rightarrow \quad du = 6x \, dx$$

$$\Rightarrow \quad x \, dx = \frac{1}{6} \, du$$

$$I = \int e^u \frac{1}{6} du$$
$$= \frac{1}{6} e^u + c$$
$$= \frac{e^{3x^2}}{6} + c$$

Exercise 12-3: Evaluate the following integrals:

a)
$$\int (x^2+1)^{12}x \, dx$$

b)
$$\int \frac{1}{(3x+2)^3} dx$$

c)
$$\int \tan x \, dx$$

d)
$$\int \sin 4x \, dx$$

$$e) \int \sqrt{13x+7} \, dx$$

$$f) \int (1-\cos x)^3 \sin x \, dx$$

g)
$$\int \frac{x+3}{x^2+6x-1} dx$$

h)
$$\int \frac{x+3}{(x^2+6x-1)^2} \, dx$$

i)
$$\int \frac{1}{1+9x^2} \, dx$$

j)
$$\int \frac{5}{16+25x^2} dx$$

k)
$$\int \cos(7x^2 + 4) \, x \, dx$$

Substitution in Definite Integrals: If u' is continuous on the interval [a,b] and f is continuous on the range of u then

$$\int_{a}^{b} f(u(x)) u'(x) dx = \int_{u(a)}^{u(b)} f(u) du$$

When using substitution in definite integrals,

don't forget to transform the limits!

Exercise 12-4: Evaluate the definite integral

$$\int_0^1 8x(x^2+2)^3 \, dx$$

Solution: Using $u = x^2 + 2$, du = 2xdx and

$$x = 0 \implies u = 2,$$

$$x = 1 \implies u = 3$$

we obtain

$$I = \int_{2}^{3} 4u^{3} du$$
$$= u^{4} \Big|_{2}^{3}$$
$$= 81 - 16$$
$$= 65$$

Another idea is to evaluate it as an indefinite integral, rewrite u in terms of x and then use limits for x.

Once again, using $u = x^2 + 2$, du = 2xdx

$$\int 8x(x^{2}+2)^{3} dx = \int 4u^{3} du$$

$$= u^{4} + c$$

$$= (x^{2}+2)^{4} + c$$

$$\int_{0}^{1} 8x(x^{2}+2)^{3} dx = (x^{2}+2)^{4} \Big|_{0}^{1}$$

$$= 81 - 16$$

$$= 65$$

Exercise 12-5: Evaluate the following definite integrals.

a)
$$\int_0^4 x \sqrt{x^2 + 9} \, dx$$

b)
$$\int_0^{\pi/2} \sin x \cos x \, dx$$

c)
$$\int_{0}^{8} x \sqrt{x+1} \, dx$$

d)
$$\int_{1}^{3} \frac{x+2}{x^2+4x+7} dx$$

e)
$$\int_0^{\pi/4} \sqrt{\tan x} \sec^2 x \, dx$$

f)
$$\int_{1}^{4} \frac{(1+\sqrt{x})^4}{\sqrt{x}} dx$$

$$\mathbf{g)} \int_0^{\sqrt{\pi}} t \sin \frac{t^2}{2} dt$$

h)
$$\int_0^{\pi/2} (1+3\sin\theta)^{3/2}\cos\theta \,d\theta$$

Area Between Curves: Let f and g be continuous with $f(x) \geqslant g(x)$ on [a,b]. Then the area of the region bounded by the curves y=f,y=g and the vertical lines x=a,x=b is:

$$A = \int_{a}^{b} \left(f(x) - g(x) \right) dx$$

It is also possible to integrate with respect to y. Then,

$$A = \int_{c}^{d} \left(f(y) - g(y) \right) dy$$

Note that we should integrate: TOP minus BOTTOM, or RIGHT minus LEFT.

Exercise 12-6: Find the area of the region bounded above by y=x+6, below by $y=x^2$ and bounded on the sides by the lines $x=0,\ x=2$.

Solution:
$$A = \int_0^2 x + 6 - x^2 dx$$

 $= \frac{x^2}{2} + 6x - \frac{x^3}{3} \Big|_0^2$
 $= 2 + 12 - \frac{8}{3} - 0$
 $= \frac{34}{3}$

Exercise 12-7: Sketch the region enclosed by the given curves, and find its area.

a)
$$y = x^2, \ y = x + 6$$
 (Answer: $\frac{125}{6}$)

b)
$$x = y^2, \ \ x = y + 2$$
 (Answer: $\frac{9}{9}$)

c)
$$y = x^2, y = \sqrt{x}, x = 1/4, x = 1$$
 (Answer: $\frac{49}{192}$)

d)
$$y = 2 + |x - 1|, \quad y = -\frac{1}{5}x + 7$$
 (Answer: 24)

e)
$$y = 4 - x^2, y = 3x^2 - 12$$
 (Answer: $\frac{128}{3}$)

f)
$$y=x^2, \ y=a^2$$
 (Answer: $\frac{4a^3}{3}$)

Integration by Parts: We know that

$$\frac{d}{dx}(uv) = v\frac{du}{dx} + u\frac{dv}{dx}$$

therefore:

$$d(uv) = v \, du + u \, dv$$

$$u \, dv = d(uv) - v \, du$$

Integrating both sides, we obtain:

$$\int u \, dv = uv - \int v \, du$$

Exercise 12-8: Evaluate

$$\int xe^x \, dx$$

Solution: We have to choose u and dv correctly.

$$u = x \implies du = dx$$

 $dv = e^x dx \implies v = e^x$

Using the integration by parts formula, we obtain

$$\int xe^x dx = xe^x - \int e^x dx$$

$$\int xe^x dx = xe^x - \int e^x dx$$

$$= xe^x - e^x + c$$

(Check that the alternative choice $u = e^x$, dv = xdx does NOT work)

Exercise 12-9: Evaluate the following integrals:

a)
$$\int x \sin x \, dx$$

b)
$$\int xe^{3x} dx$$

c)
$$\int x^2 e^x \, dx$$

$$\mathbf{d)} \int x^2 \ln x \, dx$$

$$e) \int \frac{\ln x}{\sqrt{x}} \, dx$$

$$\mathbf{f)} \int \ln x \, dx$$

Definite Integrals using Integration by Parts:

$$\int_{a}^{b} u \, dv = uv \bigg|_{a}^{b} - \int_{a}^{b} v \, du$$

Exercise 12-10: Evaluate the following integrals:

a)
$$\int_{0}^{2} xe^{-x} dx$$

b)
$$\int_{1}^{e} \sqrt{x} \ln x \, dx$$

Review Exercises

Exercise 12-11: Evaluate the following integrals:

a)
$$\int \sin^7 x \, \cos x \, dx$$

b)
$$\int \sin^7 x \, \cos^3 x \, dx$$

c)
$$\int \frac{1}{x \ln x} \, dx$$

$$\mathbf{d)} \int \frac{dx}{\sqrt{x}(1+\sqrt{x})^2}$$

e)
$$\int \frac{\sin x \, \cos x}{3 + 4 \sin^2 x} \, dx$$

$$\mathbf{f)} \int \frac{e^{-\frac{1}{x}}}{x^2} \, dx$$

$$\mathbf{g)} \int \frac{1}{3x+1} dx$$

$$\mathbf{h)} \int \frac{2x+1}{x^2+x+1} dx$$

Exercise 12-12: Evaluate the following definite integrals.

a)
$$\int_{\pi/12}^{\pi/9} \sec^2 3x \, dx$$

b)
$$\int_{a}^{e^2} \frac{(\ln x)^3 dx}{x}$$

c)
$$\int_0^{\pi/2} \frac{\cos x}{5 - 2\sin x} \, dx$$

Exercise 12-13: Find the area enclosed by the following curves:

a)
$$y = 3x + 7$$
, $y = -x^2 + 1$, $x = -1$, $x = 4$

b)
$$y = x^2 + 4x + 4$$
, $y = 3x + 10$

c)
$$y = 2 - x^2$$
, $y = -x$

d)
$$y = \sqrt{x}, \ y = -\sqrt{x}, \ x = 4$$

Exercise 12-14: Evaluate the following integrals:

a)
$$\int x^p \ln x \, dx$$

b)
$$\int \arctan x \, dx$$

c)
$$\int x \sec^2 x \, dx$$

$$\mathbf{d)} \int \cos x e^x \, dx$$

e)
$$\int_0^1 x^2 e^x dx$$

— End of WEEK —

Author: Dr. Emre Sermutlu

Last Update: December 15, 2016