Week 8 – Extreme Values

For example,

The change in the value of y is the increment Δy .

$$\Delta y = f(x + \Delta x) - f(x)$$

Differential is defined as

$$dy = f'(x)\,\Delta x$$

dy is an approximation to Δy . If Δx is small, approximation is good.

Suppose we know function and derivative values at x = a, we want to estimate f at a nearby point $x = a + \Delta x$.

$$f(a + \Delta x) = f(a) + \Delta y$$
$$f(a + \Delta x) \approx f(a) + f'(a)\Delta x$$

Now, replace Δx by x - a to obtain

$$f(x) \approx f(a) + f'(a)(x-a)$$

This is the linear approximation to f near a. The approximation becomes better as x gets closer to a.

Exercise 8-1: Find a linear approximation of

$$f(x) = (1+x)^n$$

near x = 0

Solution:

$$f'(x) = n(1+x)^{n-1}$$

 $f(0) = 1, \qquad f'(0) = n$

Linear approximation is:

1 + nx

In other words

$$(1+x)^n \approx 1 + nx$$

The approximation becomes better as $x \to 0$.

$$\sqrt{1+x} \approx 1 + \frac{1}{2}x$$
$$\frac{1}{\sqrt{1+x}} \approx 1 - \frac{1}{2}x$$

Exercise 8-2: Find a linear approximation of $f(x) = \sin x$ near

b)
$$x = \pi$$

Exercise 8-3: Estimate the following numbers without a calculator:

e) $\sqrt{1.03}$

Exercise 8-4: Write dy in terms of x and dx

a)
$$y = x + \sqrt{x^2 + 1}$$

b) $y = \frac{x + 1}{x^2 - 2}$
c) $y = \frac{\cos x}{\sqrt{x}}$

Absolute Maximum and Minimum Values

lf

$$f(c) \leqslant f(x)$$

for all x on a set S of real numbers, f(c) is the absolute minimum value of f on S. Similarly if

$$f(c) \ge f(x)$$

for all x on S, f(c) is the absolute maximum value of f on S.

Theorem: If the function f is continuous on the closed interval [a, b], then f has a maximum and a minimum value on [a, b].

(Note that, if f is not continuous or if the interval is not closed, there may or may not be extreme values.)

Local Extrema: f(c) is local maximum if

$$f(x) \leqslant f(c)$$

for all x in some open interval containing c. f(c) is local minimum if

$$f(x) \ge f(c)$$

for all x in some open interval containing c.

Critical Point: A number c is called a critical point of f if f'(c) = 0 or f'(c) does not exist. Note that f can have a local extremum only on a critical point.

Theorem: Suppose that f is continuous and f(c) is the absolute maximum (or minimum) of f on [a, b]. Then c is either a critical point of f or an endpoint.

How to find absolute extrema:

- Find the points where f' = 0
- Find the points where f' does not exist.
- Consider such points only if they are **inside** the given interval.
- Consider endpoints.
- Check all candidates. Both absolute minimum and maximum are among them.

Exercise 8-5: Find the maximum and minimum values of *f* on the given interval:

- a) $f(x) = 12 x^2$ on [2, 4]
- **b)** $f(x) = 12 x^2$ on [-2, 4]
- c) $f(x) = x^3 2x$ on [-1, 4]
- **d)** $f(x) = x + \frac{9}{x}$ on [1,4]
- e) $f(x) = 3x^5 5x^3$ on [-2, 2]

f)
$$f(x) = |3x - 5|$$
 on $[0, 2]$

g)
$$f(x) = x\sqrt{1-x^2}$$
 on $[-1,1]$

Exercise 8-6: Find two non-negative real numbers such that their sum is 40 and their product is as large as possible.

Rolle's Theorem: Let f be continuous and differentiable on [a, b]. If f(a) = f(b), then there exists c in (a, b) such that f'(c) = 0.

Mean Value Theorem: Let f be continuous and differentiable on [a, b]. There exists c in (a, b) such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Corollaries of the Mean Value Theorem:

- If f' = 0 on [a, b] then f is constant on [a, b]. $(f' = 0 \implies f = c)$
- If the derivatives of two functions are equal on [a, b], then they differ by a constant on [a, b]. (f' = g' ⇒ f g = c)
- If f' > 0 then f is increasing. If f' < 0 then f is decreasing.

Increasing and Decreasing Functions: If

 $f(x_1) < f(x_2)$ for all $x_1 < x_2$

f is increasing. If

$$f(x_1) > f(x_2)$$
 for all $x_1 > x_2$

f is decreasing.

First Derivative Test for Local Extrema: Let f be continuous on I and differentiable there except possibly on c. f has a local extremum at c if and only if f' changes sign at c.

- If f' < 0 for x < c and f' > 0 for x > c then f(c) is a local minimum.
- If f' > 0 for x < c and f' < 0 for x > c then f(c) is a local maximum.

Exercise 8-7: Determine the intervals on which f is increasing and decreasing:

a)
$$f(x) = 16 - 4x^2$$

b) $f(x) = x^4 - 2x^2 + 1$
c) $f(x) = \frac{x}{x+1}$

Review Exercises

Exercise 8-8: Estimate the following without a calculator. Then, compare your estimation with exact results.

a)
$$\frac{1}{\sqrt{1.008}}$$

b) $(99.7)^{3/2}$
c) $\sqrt{26}$

1

Exercise 8-9: Find the linearization of $f = \tan x$ at $x = \pi/3$ and $x = \pi/4$. Sketch the function and linearization.

Exercise 8-10: Find and classify the critical points of the following functions:

a)
$$f(x) = (x^2 - 3)e^x$$

b) $f(x) = \frac{x^3}{3} - 2x^2 + 4x$
c) $f(x) = x^{1/3}(x - 4)$

Exercise 8-11: Find two non-negative real numbers x, y such that

$$2x + 3y = 60$$

and their product xy is as large as possible.

Exercise 8-12: Find the maximum and minimum values of *f* on the given interval:

a)
$$f = x^{2/3}$$
 on $[-2, 3]$
b) $f = 10x(2 - \ln x)$ on $[1, e^2]$

Exercise 8-13: Determine the intervals where the following functions are increasing and decreasing:

a)
$$f(x) = x^3 - 12x - 5$$

b) $f(x) = \frac{x^2 - 3}{x - 2}$
c) $f(x) = 4x^5 + 5x^4 - 40x^3$
d) $f(x) = x^4 e^{-x}$

— End of WEEK —

Author: Dr. Emre Sermutlu

Last Update: November 16, 2016