MATH 155-Calculus for Engineering I
 First Midterm Examination

1) Find the domain and range of the following functions. Explain your solution.
a)(5 pts) $f(x)=3(x-2)^{2}+7$
b) $\left(5\right.$ pts) $f(x)=\frac{12}{x^{4}+4}$
c)(5 pts) $f(x)=\ln |8 x-7|$
2) (15 pts) Find a formula for the piecewise-defined function in the figure. Explain your solution.

3) Evaluate the following limits if they exist. Explain your solution.
(Do NOT use L'Hôpital's Rule)
a)(5 pts) $\lim _{x \rightarrow 0} \frac{x^{3}-27}{x-3}$
b)(5 pts) $\lim _{x \rightarrow 0} \frac{\tan \left(2 x^{3}\right) \sin \left(3 x^{2}\right)}{x^{5} \cos ^{2} x}$
c)(5 pts) $\lim _{x \rightarrow 5} \frac{3 x-15}{|x-5|}$
4) a) (10 pts) By using Intermediate Value Theorem (IVT), show that the equation

$$
x^{4}-9 x^{2}+14=0
$$

has four different roots in the interval $[-3,3]$. Explain your solution.
b)(10 pts) Find all discontinuities of the following function and classify them as removable or non-removable. Explain your solution.

$$
f(x)=\left\{\begin{array}{ccc}
3 x+4 & \text { if } & x<4 \\
26 & \text { if } & x=4 \\
x^{2} & \text { if } & 4<x<5 \\
26 & \text { if } & x=5 \\
52-x^{2} & \text { if } & 5<x<6 \\
x^{2}-20 & \text { if } & x \geq 6
\end{array}\right.
$$

5) Evaluate the following limits if they exist. Explain your solution.
(Do NOT use L'Hôpital's Rule)
a)(5 pts)

$$
\lim _{x \rightarrow \infty} \sqrt{5 x^{2}+3 x}-\sqrt{5 x^{2}+7 x}
$$

b) (5 pts)

$$
\lim _{x \rightarrow \infty} \frac{4-2 x+x \sqrt{x}-x^{-1}+x^{5 / 2}}{\left(13 x^{2}+6 x+x \sqrt{x}\right) \sqrt{x}}
$$

c) (5 pts)

$$
\lim _{x \rightarrow 2^{-}} \frac{1}{\ln \frac{x}{2}}
$$

6) If exists, find all horizontal, vertical and oblique asymptotes for the following functions. your solution.
a) (10 pts)

$$
f(x)=\frac{155 x+2016}{x+2017}
$$

b) (10 pts)

$$
f(x)=\frac{3 x^{3}+x^{2}-20 x+13}{x^{2}+x-6}
$$

Answers

1) a) $f(x)$ is a polynomial function so domain $(f)=\mathbb{R}$.

As

$$
(x-2)^{2} \geqslant 0
$$

we have

$$
3(x-2)^{2}+7 \geqslant 7
$$

so range of f is:

$$
[7, \infty)
$$

b) As $x^{4}+4 \neq 0$ for any real number, $f(x)$ is defined for all real numbers. So domain $(f)=\mathbb{R}$. Clearly, $f(x)>0$ for all $x \in \mathbb{R}$.
Minimum of $x^{4}+4$ is 4 so maximum of f is $\frac{12}{4}=3$.
Therefore range of f is:

$$
(0,3]
$$

c) $f(x)$ is defined whenever $|8 x-7|>0$ so domain $(f)=\mathbb{R} \backslash\{7 / 8\}$.

Range of $f(x)$ is the same as range of $\ln x$, therefore the range is \mathbb{R}.
2) ℓ_{1} is a line passing through $(-2,-6)$ and $(0,0)$. Its slope is

$$
m_{1}=\frac{0-(-6)}{0-(-2)}=3
$$

Its equation is:

$$
y-0=3(x-0) \quad \Rightarrow \quad y=3 x
$$

Similarly, ℓ_{2} is a line passing through $(3,-6)$ and $(0,0)$. Its slope is $m_{2}=-2$ and its equation is:

$$
y=-2 x
$$

ℓ_{3} is a horizontal line with slope zero and equation $y=-6$. Putting all these together, we obtain:

$$
f(x)=\left\{\begin{array}{ccc}
3 x & \text { if } & x<0 \\
-2 x & \text { if } & 0 \leqslant x \leqslant 3 \\
-6 & \text { if } & x>3
\end{array}\right.
$$

3) a) $\lim _{x \rightarrow 0} \frac{x^{3}-27}{x-3}=\lim _{x \rightarrow 0} \frac{(x-3)\left(x^{2}+3 x+9\right)}{x-3}$

Assuming $x \neq 3$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0}\left(x^{2}+3 x+9\right) \\
& =9
\end{aligned}
$$

b) $\lim _{x \rightarrow 0} \frac{\tan \left(2 x^{3}\right) \sin \left(3 x^{2}\right)}{x^{5} \cos ^{2} x}=\lim _{x \rightarrow 0} \frac{\tan \left(2 x^{3}\right)}{2 x^{3}} \cdot \frac{\sin \left(3 x^{2}\right)}{3 x^{2}} \cdot \frac{6}{\cos ^{2} x}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{\sin \left(2 x^{3}\right)}{2 x^{3}} \cdot \frac{1}{\cos \left(2 x^{3}\right)} \cdot \frac{\sin \left(3 x^{2}\right)}{3 x^{2}} \cdot \frac{6}{\cos ^{2} x} \\
& =1 \cdot 1 \cdot 1 \cdot 6 \\
& =6
\end{aligned}
$$

c) $\lim _{x \rightarrow 5^{+}} \frac{3 x-15}{|x-5|}=\lim _{x \rightarrow 5^{+}} \frac{3 x-15}{x-5}$

$$
=3
$$

$\lim _{x \rightarrow 5^{-}} \frac{3 x-15}{|x-5|}=\lim _{x \rightarrow 5^{-}} \frac{3 x-15}{-x+5}$

$$
=-3
$$

Right and left limits are not equal \Rightarrow Limit does NOT exist.
4) a) Let's define the function $f(x)=x^{4}-9 x^{2}+14$. Obviously, this is continuous everywhere, because it is a polynomial. Let's check the sign of the function values on certain points:

x	$f(x)$	sign
-3	14	+
-2	-6	-
-1	6	+
0	14	+
1	6	+
2	-6	-
3	14	+

Using IVT, we can see that there must be a root to the equation $f(x)=0$ on $(-3,-2)$, a second root on $(-2,-1)$, a third on $(1,2)$ and a fourth on $(2,3)$.
b) We have to check f around 3 points:
$\mathrm{x}=4$:

$$
\begin{aligned}
& \lim _{x \rightarrow 4^{-}} f(x)=\lim _{x \rightarrow 4^{-}} 3 x+4=16 \\
& \lim _{x \rightarrow 4^{+}} f(x)=\lim _{x \rightarrow 4^{+}} x^{2}=16 \\
& \quad \Rightarrow \quad \lim _{x \rightarrow 4} f(x)=16 \\
& f(4)=26 \neq \lim _{x \rightarrow 4} f(x)
\end{aligned}
$$

At $x=4$, function is discontinuous, because the function value is not equal to the limit. Discontinuity is removable because limit exists.
$\mathrm{x}=5$:

$$
\begin{aligned}
& \lim _{x \rightarrow 5^{-}} f(x)=\lim _{x \rightarrow 5^{-}} x^{2}=25 \\
& \lim _{x \rightarrow 5^{+}} f(x)=\lim _{x \rightarrow 5^{+}} 52-x^{2}=27 \\
& \quad \Rightarrow \quad \lim _{x \rightarrow 5} f(x) \text { does NOT exist }
\end{aligned}
$$

At $x=5$, function is discontinuous, because limit does not exist. Discontinuity is non-removable.

$$
\mathrm{x}=6:
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 6^{-}} f(x)=\lim _{x \rightarrow 6^{-}} 52-x^{2}=16 \\
& \lim _{x \rightarrow 6^{+}} f(x)=\lim _{x \rightarrow 6^{+}} x^{2}-20=16 \\
& \Rightarrow \lim _{x \rightarrow 6} f(x)=16 \\
& f(6)=16=\lim _{x \rightarrow 6} f(x)
\end{aligned}
$$

At $x=6$, function is continuous.
5) a) $\lim _{x \rightarrow \infty} \sqrt{5 x^{2}+3 x}-\sqrt{5 x^{2}+7 x}=\lim _{x \rightarrow \infty}\left(\sqrt{5 x^{2}+3 x}-\sqrt{5 x^{2}+7 x}\right) \cdot \frac{\sqrt{5 x^{2}+3 x}+\sqrt{5 x^{2}+7 x}}{\sqrt{5 x^{2}+3 x}+\sqrt{5 x^{2}+7 x}}$

$$
\begin{aligned}
& =\lim _{x \rightarrow \infty} \frac{5 x^{2}+3 x-\left(5 x^{2}+7 x\right)}{\sqrt{5 x^{2}+3 x}+\sqrt{5 x^{2}+7 x}} \\
& =\lim _{x \rightarrow \infty} \frac{-4 x}{|x|\left(\sqrt{5+\frac{3}{x}}+\sqrt{5+\frac{7}{x}}\right)} \\
& =\lim _{x \rightarrow \infty} \frac{-4}{\sqrt{5+\frac{3}{x}}+\sqrt{5+\frac{7}{x}}} \\
& =\frac{-2}{\sqrt{5}}
\end{aligned}
$$

b) $\begin{aligned} \lim _{x \rightarrow \infty} \frac{4-2 x+x \sqrt{x}-x^{-1}+x^{5 / 2}}{\left(13 x^{2}+6 x+x \sqrt{x}\right) \sqrt{x}} & =\lim _{x \rightarrow \infty} \frac{x^{5 / 2}\left(1+\frac{1}{x}-\frac{2}{x^{3 / 2}}+\frac{4}{x^{5 / 2}}-\frac{1}{x^{7 / 2}}\right)}{x^{5 / 2}\left(13+\frac{6}{x}+\frac{1}{x^{1 / 2}}\right)} \\ & =\frac{1}{13}\end{aligned}$
c) $x \rightarrow 2^{-}$

$$
\begin{aligned}
& \Rightarrow \quad \frac{x}{2} \rightarrow 1^{-} \\
& \Rightarrow \quad \ln \frac{x}{2} \rightarrow 0^{-} \\
& \Rightarrow \quad \lim _{x \rightarrow 2^{-}} \frac{1}{\ln \frac{x}{2}}=-\infty
\end{aligned}
$$

Limit does NOT exist.
6) a) $\begin{aligned} \lim _{x \rightarrow \infty} f(x) & =\lim _{x \rightarrow \infty} \frac{x\left(155+\frac{2016}{x}\right)}{x\left(1+\frac{2017}{x}\right)} \\ & =155\end{aligned}$
$\Rightarrow \quad y=155$ is a horizontal asymptote.

$$
\lim _{x \rightarrow-2017^{+}} f(x)=-\infty \quad \text { and } \quad \lim _{x \rightarrow-2017^{-}} f(x)=\infty
$$

$\Rightarrow \quad x=-2017$ is a vertical asymptote.
b) Degree of numerator is 3 , degree of denominator is 2 , so there is an oblique asymptote. Polynomial division gives:

$$
f(x)=3 x-2+\frac{1}{x^{2}+x-6}=3 x-2+\frac{1}{(x+3)(x-2)}
$$

$\Rightarrow \quad y=3 x-2$ is an oblique asymptote.

$$
\lim _{x \rightarrow-3^{+}} f(x)=-\infty \quad \text { and } \quad \lim _{x \rightarrow-3^{-}} f(x)=\infty
$$

$\lim _{x \rightarrow 2^{+}} f(x)=\infty$ and $\lim _{x \rightarrow 2^{-}} f(x)=-\infty$
$\Rightarrow \quad x=-3$ and $x=2$ are vertical asymptotes.

